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We study a simple aggregation model that mimics the clustering of traffic on a one-lane roadway.
In this model, each “car” moves ballistically at its initial velocity until it overtakes the preceding
car or cluster. After this encounter, the incident car assumes the velocity of the cluster which it
has just joined. The properties of the initial distribution of velocities in the small velocity limit
control the long-time properties of the aggregation process. For an initial velocity distribution with
a power-law tail at small velocities, P0(v) ∼ vµ as v → 0, a simple scaling argument shows that the
average cluster size grows as n ∼ t(µ+1)/(µ+2) and that the average velocity decays as v ∼ t−1/(µ+2)

as t → ∞. We derive an analytical solution for the survival probability of a single car and an
asymptotically exact expression for the joint mass-velocity distribution function. We also consider
the properties of spatially heterogeneous traffic and the kinetics of traffic clustering in the presence
of an input of cars.

I. INTRODUCTION

A variety of approaches have been applied to describe the collective properties of traffic flows [1]. For example, to
mimic congested traffic flow in two dimensions, cellular automation models have been proposed [2,3]. Asymmetric
hopping processes have also been applied to model traffic flow on a one-dimensional road [4-6]. When the number of
cars is large, traffic flows can be modelled phenomenologically in terms of a one-dimensional compressible gas [7-9].
Such an approach predicts the appearance of shock waves, where hydrodynamic quantities, such as the average density
and velocity, become discontinuous. However, the hydrodynamic approach does not naturally describe the behavior
of traffic flows in the low-density limit where there are large heterogeneities in traffic density. For this situation, a
microscopic model may provide a more appropriate description.

In this article, we introduce a ballistic aggregation process to model the kinetics of clustering in one-dimensional
traffic flows. Our approach is inspired, in part, by the recent interesting results that have been obtained for a variety of
reaction processes which involve ballistic particles including: ballistic agglomeration, Ai+Aj → Ai+j , with momentum
conserving collisions [10,11]; ballistic annihilation, A + A → 0, [12,13]; and several nucleation and ballistic growth
processes [14-16]. In our model, cars move ballistically in a one direction, say to the right, according to an initial
velocity distribution. Clusters form whenever a faster car overtakes a slower car or cluster. The overtaking car then
assumes the velocity of the lead car in the cluster. This model is an idealized description for one-lane traffic flow.
While there are obvious shortcomings in our model, it is exactly soluble and permits a thorough understanding of the
kinetics of the aggregation process.

This paper is organized as follows. In section II, we present the model and postulate the scaling behavior for the
velocity and the concentration of the clusters. This approach makes use of the statistical properties of the minimal
random variable within a large sample. In section III, we investigate the distribution of cluster velocities. For this
distribution, the cluster size is irrelevant and this feature allows us to consider a simpler “coalescence only” model.
For this reduced problem, the velocity distribution is obtained exactly in terms of the initial distribution of car
velocities and then evaluated for general continuous distributions. Building on these results, the general clustering
process is solved in section IV and an asymptotically exact expression for the joint cluster mass-velocity distribution
is obtained. In section V, we present a formal solution for the velocity distribution function for an inhomogeneous
initial distribution of particles. We examine the temporal behavior that arises for a simple step function initial spatial
distribution. In section VI, we investigate another generalization of the model to the situation with a spatially and
temporally homogeneous input of cars. Depending on the functional form of the input velocity distribution in the
low-velocity limit, the input can give rise to a steady state or to a system which continues to evolve indefinitely. We
give our conclusions in section VII. The details of specific calculations are given in the Appendices.

II. SCALING ANALYSIS

We consider an idealized one-dimensional traffic flow in which the size of each car is zero. This is appropriate for
describing clustered traffic in the low-density limit, a situation which is often encountered on rural secondary roads.
In the following, we will refer to such sizeless cars as particles. We consider the initial condition when there are only
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isolated particles (“monomers”) in the system with a random spatial distribution of density c0. The initial velocity
distribution, P (v, t = 0), can generally be written in the scaling form

P (v, t = 0) =
c0
v0
P0

(
v

v0

)
v > 0, (1)

with
∫∞

0
P0(z)dz = 1. Here we have tacitly subtracted the assumed finite value of the velocity of the slowest car

from all velocities. In what follows, it is often convenient to introduce the dimensionless density c/c0 → c, velocity
v/v0 → v and time c0v0t→ t. This yields a rescaled initial concentration which is equal to unity.

In our model, particles move at their initial velocities and whenever a particle overtakes a cluster aggregation occurs.
The aggregation rule is simply that two colliding clusters form a new cluster with a velocity equal to the smaller of
the two incident cluster velocities and with a mass equal to the sum of the two cluster masses (Figure 1). If we denote
a cluster of mass m and velocity v by Am,v, the process is described by the reaction scheme

Am1,v1 +Am2,v2 → Am1+m2,min{v1,v2}. (2)

We present now a simple argument, based on the statistics of extremes, to predict the asymptotic time dependence
of the typical cluster mass m and typical cluster velocity v at time t. Since the typical distance, l, between clusters
grows with time as l ∼ vt, the typical number of particles in a cluster is proportional to this distance, yielding
m ∼ l ∼ vt. To find the typical velocity, one has to relate the mass of a cluster to its velocity. Such a relation may
be found exactly for an auxiliary “one-sided” problem in which particles are placed with a fixed density c0 to the
left of a given “target” particle which moves at velocity v, and no particles are placed to the right. Eventually, this
target particle will form a cluster that includes all consecutive particles to its left whose initial velocities are larger
than v. The probability that there are exactly k such particles is equal to P−P k+, with P+(v)

(
P−(v)

)
defined as the

probability that a particle has a velocity larger (smaller) than v, i. e., P+(v) =
∫∞
v
P0(v′)dv′. Therefore, the average

number of particles in the cluster that ultimately forms is given by

〈m(v)〉 =
∞∑
1

kP−P
k
+ = P+/P−. (3)

Let us now assume a power-law behavior of the initial velocity distribution for small velocities,

P0(v) ' avµ, v � 1 (4)

with µ > −1 for normalizability. Imposing this power-law form in Eq. (3) yields

〈m(v)〉 =
P+(v)
P−(v)

∝ 1
vµ+1

, (5)

for sufficiently low velocities. For a particle which moves with the typical velocity, it is reasonable to expect that this
result for the “one-sided” problem gives the correct behavior for the full “two-sided” problem. If we combine Eq. (5)
with our previous estimate m ∼ vt, we find the following asymptotic relations,

m ∼ tα with α =
µ+ 1
µ+ 2

v ∼ t−β with β=
1

µ+ 2
(6)

Since the mass is conserved in the aggregation process, the typical cluster mass and the concentration of clusters c
are related by c ∼ 1/m ∼ t−α. Notice that in the limit µ→∞, the mass grows linearly with time. In contrast, when
µ→ −1, the mass is roughly constant, since the velocity distribution becomes effectively unimodal and collisions are
exceedingly rare. This qualitative dependence on the form of the initial velocity distribution is reminiscent of the
ballistic annihilation process [13], where ballistically moving particles annihilate upon collision. In both processes, one
finds that the fundamental exponents are related by α+ β = 1 as a consequence of the relation c ∼ 1/vt. Moreover,
for the two processes the decay exponents have similar functional dependences on the form of the initial velocity
distribution. However, the values of the decay exponents are different: for example, for a uniform distribution
(corresponding to µ = 0) one finds α = 1/2 for the traffic model, while α ∼= 0.76 is obtained in simulations of
the annihilation process. Additionally, despite the qualitative similarity between these two models for continuous
velocity distributions, different behaviors occur when the velocities are discrete. For such discrete distributions, the
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concentration typically decays algebraically in time for ballistic annihilation [13], while the concentration decays
exponentially in time for the traffic model.

Since both the typical mass and the velocity scale as power laws in time, the probability of finding a cluster of mass
m and velocity v, Pm(v, t), is expected to evolve toward a scaling distribution. Taking into account mass conservation,∫∞

0
dv
∑
mmPm(v, t) = const., we postulate the scaling form

Pm(v, t) ' tβ−2αΦ(M,V ), (7)

for the joint distribution, where the scaled mass, M , and scaled velocity, V , are defined by

M = m/tα and V = vtβ . (8)

Note that while the mass m is a discrete variable, the rescaled mass M is continuous.
Once the joint mass-velocity distribution is found, the single-variable mass and velocity distributions can be found

by suitable integrations over the subsidiary variable. Thus the velocity distribution, P (v, t) =
∑
m Pm(v, t), should

have the scaling form

P (v, t) ' tβ−αψ(V ), (9a)

with ψ(V ) =
∫∞

0
dMΦ(M,V ), while the cluster-mass distribution, Pm(t) =

∫∞
0
Pm(v, t), should have the scaling form

Pm(t) ' t−2αφ(M), (9b)

with φ(M) =
∫∞

0
dV Φ(M,V ).

III. THE CAR SURVIVAL PROBABILITY

As a preliminary step in obtaining a full solution for traffic clustering, consider the velocity distribution P (v, t).
For this quantity, we can ignore the masses of each cluster and focus only on the survival probability of a given car.
Thus the evolution of the velocity distribution is governed by the “derived” coalescence process

Av1 +Av2 → Amin{v1,v2}. (10)

In the coalescence process, the density of particles with velocity v is identical to P (v, t), the velocity distribution of
clusters in the full traffic aggregation model defined by Eq. (2).

Let S(v, t) be the survival probability of particles of velocity v at time t. Here “survival” means a car does not
overtake any traffic, but an overtaken car is defined to have survived. Then the velocity distribution function is given
by

P (v, t) = P0(v)S(v, t). (11)

The survival probability S(v, t) can be found by considering the possible collisions of a particle with initial position
and velocity (x, v) with slower particles whose initial positions are to the right of x. A collision between the initial
particle with co-ordinates (x, v) and a slower v′-particle does not occur up to time t if the interval [x, x+(v−v′)t] does
not include the slower particle. For an initial velocity distribution, P0(v), and a Poissonian initial spatial distribution,
the probability that there is no particle with velocity between v′ and v′ + dv′ in the interval [x, x+ (v − v′)t] is

exp [−dv′P0(v′)(v − v′)t] . (12)

For a particle to survive to time t, this exclusion probability should be taken into account for every v′ < v. To
verify this, let us assume otherwise and derive a contradiction. Thus consider a particle with initial data (x, v) that
has maintained its original velocity to time t. In addition, assume that a slower v′-particle is initially present in the
above exclusion zone, i. e., ∆x(0) < ∆v(0)t. Here ∆x(t) is the distance between the two particles and ∆v(t) the
relative velocity at time t. Since the velocity v′ can only decrease over time due to collisions, one has ∆v(t) ≥ ∆v(0).
Consequently, at time t, the separation between the two particles, ∆x(t) = ∆x(0)−

∫ t
0

∆v(t′)dt′ ≤ ∆x(0)−∆v(0)t < 0.
Thus the v-particle does not survive, in contradiction with the original assumption.

Hence, the survival probability is simply a product of the exponential factors of Eq. (12) for all v′, with v′ < v.
Evaluating this product gives the survival probability
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S(v, t) = exp
[
−t
∫ v

0

dv′(v − v′)P0(v′)
]
, (13)

and combining with Eq. (13) yields the velocity distribution,

P (v, t) = P0(v) exp
[
−t
∫ v

0

dv′(v − v′)P0(v′)
]
. (14)

This is valid for an arbitrary initial velocity distribution P0(v); the only source of stochasticity arises from the initial
conditions. For discrete initial distributions it is seen from Eq. (14) that the approach to the final concentration is
exponential in time. Thus, we focus only on the more interesting continuous initial velocity distributions.

For the power-law initial velocity distribution P0(v) ' avµ for v � 1, a direct calculation shows that the long-
time velocity distribution approaches a form that is independent of the details of the large-velocity tail of the initial
distribution,

P (v, t) ' avµ exp
[
−btvµ+2

]
, (15)

with b = a/(µ+ 1)(µ+ 2). This expression can be written in the scaling form (9a) with the scaling function

ψ(V ) = aV µ exp
[
−bV µ+2

]
. (16)

From this solution we see that the velocity distribution maintains the original power-law form for small velocities.
The exact solution also validates the scaling assumption that the asymptotic decay as well as the shape of the limiting
distribution are determined solely by the low-velocity tail of the initial distribution which, in turn, is governed by the
exponent µ.

From Eq. (15), it is straightforward to compute the total concentration and the average cluster velocity,

c(t) =
∫ ∞

0

dv P (v, t), 〈v(t)〉 =
1
c(t)

∫ ∞
0

dv v P (v, t). (17)

This gives

c(t) ' (µ+ 1)bΓ(α)(bt)−α, (18)

and

〈v(t)〉 ' 1
Γ(α)

(bt)−β , (19)

respectively. These expressions confirm the scaling laws suggested in Eq. (6).
Interestingly, the exact solution of Eq. (14) satisfies the following Boltzmann-like integro-differential equation,

∂P (v, t)
∂t

= −P (v, t)
∫ v

0

dv′(v − v′)P (v′, 0). (20)

This equation suggests that the loss of v-particles due to collisions with slower v′-particles occurs at a rate proportional
to the relative velocity, (v − v′). Moreover, the pair correlation function factorizes into a product of single-particle
velocity distributions, P (v, v′, t) = P (v, t)P (v′, 0) but with different time arguments for the two factors. In contrast,
in the conventional Boltzmann equation, the decomposition would involve the same argument for each velocity dis-
tribution. Thus, the exact Eq. (20) quantitatively indicates the degree of approximation of the mean-field Boltzmann
equation.

IV. THE FULL PROBABILITY DISTRIBUTION

We now solve for the joint mass-velocity distribution function for the general traffic model. To obtain Pm(v, t),
the density of clusters of mass m and velocity v, it is useful to introduce the cumulative distribution, Qm(v, t), the
distribution of clusters of velocity v and mass greater than or equal to m. Once the latter distribution is known,
Pm(v, t) can be obtained by

Pm(v, t) = Qm(v, t)−Qm+1(v, t). (21)
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Notice that the density of clusters of mass greater or equal to one is equal to the total cluster density, Q1(v, t) = P (v, t).
Consider a cluster of velocity v which contains at least m particles. Let us number the consecutive particles in

a cluster from right to left by the index i and denote the rightmost particle as i = 0. Denote the initial distance
between the ith and (i− 1)th particle as xi, as illustrated in Fig. 2. We first solve for Qm=2(v, t) and then generalize
to any m. Since Q2(v, t) is the probability that a cluster of velocity v has at least two particles at time t, it is equal
to the product of the probability that the particle i = 0 has survived up to time t, P (v, t), and the probability that
the cluster i = 1 (whose mass may be larger than unity) collides with the particle i = 0 prior to time t.

For this collision to occur, the collision partner from the left (i = 1) must have a velocity larger than v and the
interval x1 < (v1 − v)t must be free of other clusters. The probability for this composite event is simply the product
of each individual event. Since an interval of length x1 is empty with probability exp(−x1), the collision probability
is

Q2(v, t) = P (v, t)
∫ ∞
v

dv1P0(v1)
∫

x1<(v1−v)t

dx1 exp(−x1). (22)

The fact that the v1-particle cannot be slowed down by any other particle before colliding with the v-particle is crucial
in obtaining the solution.

To derive Qm(v, t) for general m, the joint velocity distance distribution P0(vi) exp(−xi) is integrated over the
position and velocity of the ith particle for i = 1, . . . ,m − 1. To ensure a collision, all m − 1 particles have to move
faster than the lead particle and the distance of the ith particle from the lead particle must obey x1+· · ·+xi ≤ (vi−v)t.
Imposing these constraints on the integration over the velocity and distance of the n− 1 trailing particles yields the
formal exact expression for the cumulative mass-velocity distribution,

Qm(v, t) = P (v, t)
m−1∏
i=1

∫ ∞
v

dvi

∫
x1+···+xi<(vi−v)t

dxiP0(vi) exp(−xi). (23)

For the initial velocity distribution given by Eq. (4), we find the following asymptotic behavior (see Appendix A)

Qm(v, t) ' tβ−αaV µ exp
[
−b(V +M)µ+2

]
, (24)

in terms of the scaling variables M = m/tα and V = vtβ .
In the long time limit, the joint mass-velocity distribution, Pm(v, t) = Qm(v, t)−Qm+1(v, t) can be approximated

by Pm ≈ −∂Qm/∂m. Performing the differentiation gives,

Pm(v, t) ' tβ−2αa b (µ+ 2)V µ(V +M)µ+1 exp
[
−b(V +M)µ+2

]
, (25)

which has been explicitly written in the asymptotic scaling form of Eq. (7). This result provides a complete description
of the traffic aggregation process. It may be considered as the ballistic counterpart of the well-known result [17] for
diffusion-controlled aggregation in one dimension.

For arbitrary µ we are unable to evaluate the integral over the velocity and obtain the explicit mass distribution.
However, for the particular case of a uniform initial velocity distribution, µ = 0, it is straightforward to show that

φ(M) = a exp(−aM2/2) µ = 0. (26)

Another amusing feature of the joint distribution function Φ(M,V ) for µ = 0 is the symmetry with respect to the
variables V and M . Thus the cluster mass distribution, φ(M), and the cluster velocity distribution, ψ(V ), are identical
Gaussian functions.

Generally, we are able to extract only asymptotic behavior from Eq. (23). However, in the special case of exponential
distribution, P0(v) = e−v, one can perform all the integrations and obtain an explicit solution as detailed in Appendix
B.

V. CLUSTERING IN HETEROGENEOUS TRAFFIC FLOW

The above approach can be generalized to the case of a spatially heterogeneous initial velocity distribution, P0(x, v).
For simplicity, we ignore the masses of clusters and limit ourselves to studying the velocity distribution. This time and
space dependent velocity distribution, P (x, v, t), may be found by a straightforward generalization of the approach
developed in section III for the spatially homogeneous case. The resulting expression for P (x, v, t) reads
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P (x, v, t) = P0(x− vt, v) exp

[
−
∫ v

0

dv′
∫ x−v′t

x−vt
dx′P0(x′, v′)

]
. (27)

As an illustrative example of the effects of a heterogeneous initial particle distribution, consider the one-sided
distribution in which particles are placed with a fixed density to the left of the origin and there are no particles to the
right. Thus P0(x, v) = θ(−x)P0(v), with θ the Heaviside step function. For this initial distribution, Eq. (27) yields

P (x, v, t) = θ(vt− x)P0(v) exp

[
−t
∫ v

x/t

dv′(v − v′)P0(v′)− (vt− x)
∫ x/t

0

dv′P0(v′)

]
. (28)

In the long-time limit, the average velocity decays as t−β and hence the front propagates as x = vt ∼ tα. Since the
velocity and the position of the front scale as power laws in time, Eq. (28) can be expected to have a scaling form.
Indeed, by introducing the scaled variables X = x/tα and V = vtβ , one can recast Eq. (28) into the scaling form

P (x, v, t) ' tβ−αΨ(X,V ), (29)

with the scaling function

Ψ(X,V ) = θ(V −X)aV µ exp
[
−b(V µ+2 −Xµ+2)

]
. (30)

When X = 0, this scaling function coincides with Eq. (16), the velocity distribution for the homogeneous case,
Ψ(0, V ) = ψ(V ). Notice also that the density of clusters at scaled position X, c(X, t), equals

c(X, t) = c(t)
∫ ∞
X

dVΨ(X,V )
/∫ ∞

0

dV ψ(V ), (31)

with c(t) given by Eq. (18). In the large X limit, Eqs. (30) and (31) yield

c(X, t) ' µ+ 1
X

t−α, for X � 1. (32)

Consider now the total number of clusters that infiltrate the initially empty positive half-line, N(t) ≡
tα
∫∞

0
c(X, t) dX. The asymptotic behavior of this quantity is actually determined by the finite upper cutoff of

the integral, which in turn is given by the position of the rightmost particle. For such particles the velocity is of order
unity and hence Xupper = xmax/t

α ∼ vt/tα ∼ tβ . Therefore

N(t) '
∫ tβ µ+ 1

X
dX ' α log(t). (33)

Thus the number of clusters entering the empty half-line grows only logarithmically with time for arbitrary initial
velocity distributions. The only dependence on P0(v) in Eq. (33) is the prefactor α = (µ+ 1)/(µ+ 2).

VI. CLUSTERING IN TRAFFIC FLOW WITH INPUT

In this section, we investigate traffic clustering when there is a spatially uniform input of cars. This generalization
is motivated by real traffic where cars may enter and exit a roadway. For the specific case of a spatially homogeneous
input of cars we can determine the velocity distribution using techniques similar to those employed for the traffic
coalescence model with no input.

Denote by R(v, t) the input rate of particles with velocity v at time t per unit length. The velocity distribution
function for this system, P (v, t), can be expressed as a convolution of the flux and the the probability that a particle
which was injected at time t′ maintains its velocity v up to time t in the presence of the input, SI(v, t, t′),

P (v, t) =
∫ t

0

dt′R(v, t′)SI(v, t, t′). (34)

In writing this expression, we have assumed that the system is initially empty. A particle which was injected at time
t′ will survive until time t if it avoids collisions with all slower particles which were present in the system at time t′, as
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well as avoids collisions with all particles which are injected at later times t′′ > t′. The probability for this composite
event is simply the product of the probabilities of each event,

SI(v, t, t′) = exp

[
−
∫ v

0

dv′(v − v′)
{
P (v′, t′)(t− t′) +

∫ t

t′
dt′′R(v′, t′′)(t− t′′)

}]
. (35)

Here the first factor, obtained from Eq. (13) by replacing P0(v′) with P (v′, t′), yields the probability of avoiding
collisions with particles injected prior to time t′. The second factor represents the product of exclusions of the type off
Eq. (12) for times larger than t′ and velocities smaller than v′. This factor accounts for the probability that there are
no collisions with particles injected at times t′′, t′′ > t′. Note that the kernel of the second factor involves the input
rate R at time t′′, which plays the role of the initial velocity distribution at this instant of time. Substituting Eq. (34)
into Eq. (35) gives a nonlinear integral equation that describes the kinetics of traffic clustering in the presence of
homogeneous particle input. In the following, we will assume that the flux is constant both in time and space,
R(v, t) = P0(v) with

∫∞
0
dvP0(v) = 1, so that the governing integral equation is

P (v, t) = P0(v)
∫ t

0

dt′ exp
[
−1

2
t′2
∫ v

0

dv′(v − v′)P0(v)− t′
∫ v

0

dv′(v − v′)P (v′, t− t′)
]
. (36)

In parallel with the case of no input, consider again an initial velocity distribution with a power-law small-velocity
tail, P0(v) ∼ vµ. Furthermore, let us assume that the concentration and velocity continue to vary as c ∼ t−α and
v ∼ t−β , respectively, and that the velocity distribution continues to have the scaling form of Eq. (9), P (v, t) ∼
tβ−αψ(V ). Substituting these into Eq. (36), one can extract consistency conditions for the exponents α and β. For
example, the powers of time on both sides of Eq. (36) should be equal – hence β − α = −βµ+ 1. Furthermore, both
terms in the exponential in the right-hand side of Eq. (36) cannot depend on time explicitly – hence β(µ + 2) = 2
and α+ β = 1, respectively. These conditions yield α = µ/(µ+ 2) and β = 2/(µ+ 2). Notice, however, that when µ
is positive the exponent α is also positive and therefore the concentration, c ∼ t−α, decays to zero. This is in obvious
contradiction with the nature of the problem: with a constant flux the concentration may grow indefinitely or a
steady state concentration may be reached. Thus, one can expect that the above description holds only for µ < 0. For
positive µ, we anticipate that the system reaches a steady state with a constant concentration and a typical cluster
mass n ∼ t. At the transition µ = 0, a logarithmic temporal dependence is anticipated to occur.

While we cannot confirm the above picture rigorously, we can provide heuristic justification. First assume that the
velocity distribution evolves towards a steady state P∞(v). Then as t→∞ Eq. (36) becomes

P∞(v) = P0(v)
∫ ∞

0

dt′ exp
[
−1

2
t′2
∫ v

0

dv′(v − v′)P0(v)− t′
∫ v

0

dv′(v − v′)P∞(v′)
]
. (37)

If P0(v) ∼ vµ as v → 0, Eq. (37) suggests a similar behavior for the steady state velocity distribution function,

P∞(v) ' Avν v � 1. (38)

Since the concentration of clusters tends to the steady state limit c∞ =
∫∞

0
P∞(v) dv, the exponent ν must satisfy

the inequality ν > −1. If one substitutes the assumed power law behaviors for P0(v) and P∞(v) into Eq. (37), three
possibility arise in the limit v → 0 which depend on the sign of ν − µ

2 + 1. In the case where ν > µ
2 − 1, the first

exponential factor in Eq. (37) provides the dominant contribution. However, a simple calculation of the integral shows
that ν = µ

2 − 1. Similarly, for ν < µ
2 − 1, one again finds ν = µ

2 − 1. Only the last possibility, ν = µ
2 − 1, appears to

be self-consistent. Since ν > −1, we obtain µ > 0. Therefore starting from the assumption that the system reaches
the steady state we have obtained that the exponent µ should be positive. This provides evidence for our conclusion
that µ = 0 demarcates the scaling and steady state behaviors.

Notice also that for 0 < µ � 1, an asymptotic analysis of Eq. (37) gives the numerical prefactor in Eq. (38),
A '

√
aµ/2. This yields the estimate for the steady state concentration of clusters,

c∞ '
√

2a
µ

0 < µ� 1, (39)

Since c∞ diverges as µ→ 0 this indicates that at the critical value µ, µ = 0, the system is still evolving.
Assuming the scaling form, obtained by the power counting analysis of Eq. (36), let us examine the asymptotic

behavior of the velocity distribution and the typical concentration. If we substitute the scaling assumptions

P (v, t) ' tβ−αψ(V ) with α =
µ

µ+ 2
, β =

2
µ+ 2

, (40)
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into Eq. (36), we arrive at the following equation for the scaling function ψ(V ),

ψ(V ) = aV µ
∫ 1

0

dτ exp

[
−1

2
bτ2V µ+2 − τ(1− τ)β−α

∫ V

0

ψ[V ′(1− τ)β ](V − V ′)dV ′
]
, (41)

where τ = t′/t and b = a/(µ+ 1)(µ+ 2).
Although we are unable to solve this nonlinear integral equation in general, we can obtain interesting information

regarding the interesting borderline case of µ = 0. This case corresponds to α = 0, suggesting that the concentration
grows slower than algebraically in time. However, the concentration of clusters is given by

c(t) ' t−α
∫
ψ(V )dV, (42)

and for µ = 0 the integral diverges at the upper limit. To obtain the asymptotic behavior we consider Eq. (41) for
the case µ = 0,

ψ(V ) = a

∫ 1

0

dτ exp

[
−1

2
bτ2V 2 − τ(1− τ)

∫ V

0

ψ[V ′(1− τ)](V − V ′)dV ′
]
. (43)

If we temporarily ignore the second term in the exponent, we find ψ(V ) ∼ V −1 for V → ∞. If we then include the
second term in the exponent and apply the previous asymptotic behavior of ψ(V ) ∼ V −1, we find ψ(V ) ∼ (V log V )−1.
These estimates suggest the ansatz

ψ(V ) ' CV −1(log V )−λ, (44)

for V � 1. Upon substituting Eq. (44) into Eq. (43) one obtains the constants λ = 1/2 and C = 1/
√

2. With these
values, the integral in the right-hand side of Eq. (42) diverges as

√
2 log V , where V now denotes the maximum value

of the scaled velocity. Since β = 1, this maximal velocity is proportional to t, which therefore suggests the logarithmic
time dependence

c(t) '
√

2 log t. (45)

In the complementary case of µ < 0, we have confirmed that the naive scaling ansatz is consistent with Eq. (42).

VII. CONCLUSION

We have introduced a simple ballistic aggregation process that mimics the kinetics of clustering in a single lane of
traffic. Through direct probabilistic approaches, the analytical forms of the cluster velocity distribution and the joint
mass-velocity distribution have been derived. For an initial velocity distribution of the form P0(v) ∼ vµ as v → 0,
both the average velocity and the average cluster mass have power law time dependences with exponents that are
rational functions of µ. This qualitative behavior is similar to that observed in the closely related ballistic annihilation
process. We are also able to determine the asymptotic form of the joint mass-velocity distribution.

Our model can also be analyzed in the cases of a spatially heterogeneous particle distribution and continuous input
of particles. For the simple case of an initial one-sided spatial distribution, the system evolves towards a scaling
distribution both in velocity and spatial variables. We have thus found that the total number of clusters in the
initially empty half-line grows logarithmically with time for all initial velocity distributions. When there is a steady
input of particle in an initially empty system, we have found that there is a transition between steady state behavior
for µ > 0 and transient behavior for µ < 0 which is similar to that found when there is no in put. For the borderline
case of the uniform distribution, µ = 0, we have found that the total concentration of clusters grows as

√
log t.

The irreversible traffic model introduced in this paper leads to ever-growing clusters. To describe traffic flows more
realistically, several mechanisms to induce a steady state can be envisioned. For example, the input model can be
generalized to incorporate a flux out of the system. Another realistic direction is to allow a faster car to pass a slower
car at a rate which is some increasing function of the velocity difference of the two cars. This would allow a fast car
to traverse a cluster car-by-car and ultimately regain its intrinsic velocity once the cluster is completely passed. It
may prove interesting to examine the steady-state properties for this class of models.
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APPENDIX A: DERIVATION OF EQ. (24)

In this appendix, we derive the asymptotic form of the cumulative velocity-mass distribution which is valid for
an arbitrary initial velocity distribution with a power-law small velocity tail. The starting point for calculation of
Qm(v, t) is the formal expression of Eq. (23). By interchanging the order of the velocity and spatial integrations, the
expression can be rewritten as

Qm(v, t) = P (v, t)
m−1∏
i=1

∫ ∞
0

dxi exp(−xi)
∫ ∞
v+(x1+···+xi)/t

dvi P0(vi). (A1)

Since the details of the initial distribution for large velocities do not change the form of the scaling solution, we may
treat the more general power-law case by choosing a specific initial distribution of velocities whose form is convenient
for performing the integration over the velocity in the right-hand side of Eq. (A1). Since the velocity distribution
near v = 0 has a power-law tail, the most convenient initial distribution is

P0(v) = avµ exp
(
−avµ+1/(µ+ 1)

)
. (A2)

For this initial distribution, the integration over the velocity variables is immediate and one finds,

Qm(v, t) = P (v, t)
m−1∏
i=1

∫ ∞
0

dxi exp(−xi) exp
[
−a
(
v + (x1 + · · ·+ xi)/t

)µ+1

/(µ+ 1)
]
. (A3)

To evaluate the multiple spatial integral, we define f(z) ≡ exp
(
−azµ+1/(µ+ 1)

)
and expand f(z) to first order

about the point z = v and then exploit a number of simplifications associated with performing the integrals over the
factors e−xi . This gives

Qm(v, t) =
m−1∏
i=1

∫ ∞
0

dxi e
−xif

(
v + ε(x1 + · · ·+ xi)

)
≈
m−1∏
i=1

∫ ∞
0

dxi e
−xif(v) +

(
ε(x1 + · · ·+ xi)

)
f ′(v),

≈
m−1∏
i=1

f(v + εi) +O(ε2), (A4)

where ε = 1/t. By substituting the explicit functional form, f(z) = exp
(
−azµ+1/(µ+ 1)

)
, we have

Qm(v, t) = P (v, t)
m−1∏
i=1

exp
(
−a(v + i/t)µ+1/(µ+ 1)

)
. (A5)

Finally, the product of the exponential factors is written as an exponent of a sum. In the limit of large m, this sum
is equivalent to the integral a

∫m−1

0
dy(v + y/t)µ+1/(µ + 1). Evaluating this integral, the asymptotic form of the

cumulant mass-velocity density is obtained as

Qm(v, t) ' avµ exp
[
−b(vtβ +mt−α)µ+2

]
. (A6)

In evaluating this asymptotic expression, the exponential factor of P (v, t) cancels the factor that emerges from lower
limit of the integration over y. In Eq. (24), the above expression is written as a scaling function.
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APPENDIX B: ANALYTICAL SOLUTION FOR THE EXPONENTIAL INITIAL VELOCITY
DISTRIBUTION

We outline here the explicit analytical solution for Qm(v, t) for the exponential initial velocity distribution, P0(v) =
e−v, which corresponds to the special case µ = 0 and a = 1. For this exponential distribution, the integration of
P0(vi) over the velocity variables vi, according to Eq. (A1), equals exp[−

(
v + (x1 + · · ·+ xi)/t

)
]. Hence, we obtain

Qm(v, t) = P (v, t)e−(m−1)v
m−1∏
i=1

∫ ∞
0

dxi exp
[
−xi

(
1 +

m− i
t

)]
. (B1)

Upon integration over the space variables, the following exact expression is found for Qm(v, t),

Qm(v, t) = P (v, t)e−(m−1)vtm−1 Γ(t+ 1)
Γ(t+m)

, (B2)

where Γ(z) =
∫∞

0
xz−1 exp(−x) is the Euler gamma function and the velocity distribution obtained from Eq. (14) is

P (v, t) = exp
[
−v − t

(
e−v − 1 + v

)]
.

The exact forms for the joint mass-velocity distribution and for the mass distribution can be evaluated from Eq. (B2)
by taking the appropriate limits m → ∞ and v → 0. The resulting asymptotic expressions are identical with the
expressions of Eqs. (25) and (26) respectively.
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[15] B. Derrida, C. Godrèche, and I. Yekutieli, Phys. Rev. A 44, 6241 (1991).
[16] Yu. A. Andrienko, N. V. Brilliantov, and P. L. Krapivsky, Phys. Rev. A 45, 2263 (1992); P. L. Krapivsky, J. Chem. Phys.

97, 8817 (1992).
[17] J. L. Spouge, Phys. Rev. Lett. 60, 871 (1988).

FIGURE CAPTIONS

Fig. 1 Schematic illustration of the irreversible traffic model. A faster car overtakes a slower car and after the
encounter, the faster car assumes the velocity of the slower car.

Fig. 2 Illustration of the initial configuration of a possible three car cluster.

10


